A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area
نویسندگان
چکیده
To investigate the comparative abilities of six different bioclimatic models in an independent area, utilizing the distribution of eight different species available at a global scale and in Australia. Global scale and Australia. We tested a variety of bioclimatic models for eight different plant species employing five discriminatory correlative species distribution models (SDMs) including Generalized Linear Model (GLM), MaxEnt, Random Forest (RF), Boosted Regression Tree (BRT), Bioclim, together with CLIMEX (CL) as a mechanistic niche model. These models were fitted using a training dataset of available global data, but with the exclusion of Australian locations. The capabilities of these techniques in projecting suitable climate, based on independent records for these species in Australia, were compared. Thus, Australia is not used to calibrate the models and therefore it is as an independent area regarding geographic locations. To assess and compare performance, we utilized the area under the receiver operating characteristic (ROC) curves (AUC), true skill statistic (TSS), and fractional predicted areas for all SDMs. In addition, we assessed satisfactory agreements between the outputs of the six different bioclimatic models, for all eight species in Australia. The modeling method impacted on potential distribution predictions under current climate. However, the utilization of sensitivity and the fractional predicted areas showed that GLM, MaxEnt, Bioclim, and CL had the highest sensitivity for Australian climate conditions. Bioclim calculated the highest fractional predicted area of an independent area, while RF and BRT were poor. For many applications, it is difficult to decide which bioclimatic model to use. This research shows that variable results are obtained using different SDMs in an independent area. This research also shows that the SDMs produce different results for different species; for example, Bioclim may not be good for one species but works better for other species. Also, when projecting a "large" number of species into novel environments or in an independent area, the selection of the "best" model/technique is often less reliable than an ensemble modeling approach. In addition, it is vital to understand the accuracy of SDMs' predictions. Further, while TSS, together with fractional predicted areas, are appropriate tools for the measurement of accuracy between model results, particularly when undertaking projections on an independent area, AUC has been proved not to be. Our study highlights that each one of these models (CL, Bioclim, GLM, MaxEnt, BRT, and RF) provides slightly different results on projections and that it may be safer to use an ensemble of models.
منابع مشابه
Comparison of Interpolation Methods for the Mapping of Wind Erosion using the USEPA Model
Wind erosion is one of the environmental problems worldwide, particularly in arid and semi-arid areas of Iran. Different methods and models have been proposed to measure and monitor wind erosion in the recent years. One of the accurate models for measuring f wind erosion is the USEPA model. The purpose of this study was to evaluate the quantification of wind erosion with the USEPA model and the...
متن کاملCorrelative and mechanistic models of species distribution provide congruent forecasts under climate change
Good forecasts of climate change impacts on extinction risks are critical for effective conservation management responses. Species distribution models (SDMs) are central to extinction risk analyses. The reliability of predictions of SDMs has been questioned because models often lack a mechanistic underpinning and rely on assumptions that are untenable under climate change. We show how integrati...
متن کاملThe Combined Use of Correlative and Mechanistic Species Distribution Models Benefits Low Conservation Status Species.
Species can respond to climate change by tracking appropriate environmental conditions in space, resulting in a range shift. Species Distribution Models (SDMs) can help forecast such range shift responses. For few species, both correlative and mechanistic SDMs were built, but allis shad (Alosa alosa), an endangered anadromous fish species, is one of them. The main purpose of this study was to p...
متن کاملPrediction of potential habitat distribution of Artemisia sieberi Besser using data-driven methods in Poshtkouh rangelands of Yazd province
The present study aimed to model potential habitat distribution of A. sieberi, and its ecological requirements using generalized additive model (GAM) and classification and regression tree (CART) in in the Poshtkouh rangelands of Yazd province. For this purpose, pure habitats of the species was delineated and the species presence data was recorded by the systematic-randomize sampling method. Us...
متن کاملCan mechanism inform species' distribution models?
Two major approaches address the need to predict species distributions in response to environmental changes. Correlative models estimate parameters phenomenologically by relating current distributions to environmental conditions. By contrast, mechanistic models incorporate explicit relationships between environmental conditions and organismal performance, estimated independently of current dist...
متن کامل